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1
VISUAL TRACKING IN VIDEO IMAGES IN
UNCONSTRAINED ENVIRONMENTS BY
EXPLOITING ON-THE-FLY CONTEXT
USING SUPPORTERS AND DISTRACTERS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(e)
to U.S. Provisional Application Ser. No. 61/499,101, entitled
“VISUAL TRACKING IN VIDEO IMAGES IN UNCON-
STRAINED ENVIRONMENTS BY EXPLOITING ON-
THE-FLY CONTEXT USING DISTRACTERS AND SUP-
PORTERS,” and filed on Jun. 20, 2011. The disclosure ofthe
above application is incorporated herein by reference in its
entirety.

STATEMENT AS TO FEDERALLY SPONSORED
RESEARCH

This invention was made with government support under
grant number W911NF-06-1-0094 awarded by the MURI-
ARO (Multidisciplinary University Research Initiative/
Army Research Office). The government has certain rights
in the invention.

BACKGROUND

This document relates to identifying and tracking objects
in images, such as visual tracking in video images in
unconstrained environments.

Visual tracking in unconstrained environments is very
challenging due to the existence of several sources of
varieties such as changes in appearance, varying lighting
conditions, cluttered background, and frame-cuts. A major
factor causing tracking failure is the emergence of regions
having similar appearance as the target. It is even more
challenging when the target leaves the field of view (FoV)
leading the tracker to follow another similar object, and not
reacquire the right target when it reappears.

SUMMARY

Visual tracking in unconstrained environments can be
improved by exploiting the context on-the-fly in two terms:
distracters and supporters. Both of these can be automati-
cally explored using a sequential randomized forest, an
online template-based appearance model, and local features.
Distracters are regions which have similar appearance as the
target and consistently co-occur with a high confidence
score. The tracker can keep tracking these distracters to
avoid drifting. Supporters, on the other hand, are local
key-points around the target with consistent co-occurrence
and motion correlation in a short time span. They can play
an important role in verifying the genuine target. Extensive
experiments on challenging real-world video sequences
show the tracking improvement when using this context
information. Comparisons with several state-of-the-art
approaches are also provided.

An aspect of the subject matter described in this specifi-
cation can be embodied in a method that includes receiving
video data, tracking a single target identified in the video
data, and outputting information corresponding to the
tracked target. The tracking can include detecting and using
one or more distracters and one or more supporters, where
a distracter has an appearance similar to that of the tracked
target, and a supporter has points outside of the tracked
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target that have motion correlation with the tracked target.
Detection of the target and the one or more distracters can
be done using a shared classifier having binary testing
functions corresponding to positive and negative samples
added during training, but not including hard negative
samples. In addition, a distracter can be discarded from the
one or more distracters when its appearance changes to no
longer be similar to the target, or when it can no longer be
tracked, or both.

Detecting the one or more supporters can be done using
a sliding window of k frames in the video data and by
distinguishing active supporters from passive supporters.
The one or more distracters can be explored using a sequen-
tial randomized forest and a template-based appearance
model, where the template-based appearance model is con-
structed in a binary search tree using k-means, and the one
or more supporters are local features. In addition, a maxi-
mum number of the one or more distracters and a maximum
number of the one or more supporters can be limited in some
implementations. Further detailed implementations of this
method aspect of the subject matter are described below and
can be embodied in a non-transitory computer-readable
medium encoding instructions that cause computing appa-
ratus to perform operations of the methods. These methods
can also be implemented in various computer systems, such
as a recognition system, a face tracking system, and a
pedestrian tracking system.

Another aspect of the subject matter described in this
specification can be embodied in a method that includes
identifying an object in a first image of a sequence of
images, identifying one or more regions similar to the object
in the first image of the sequence of images, identifying one
or more features around the object in the first image of the
sequence of images, preventing drift in detection of the
object in a second image of the sequence of images based on
the one or more regions similar to the object, and verifying
the object in the second image of the sequence of images
based on the one or more features. The method can also
include representing the object and each of the one or more
regions by individual evolving templates, and representing
each of the one or more features as a keypoint having a
descriptor of a region around the feature.

Identifying the object can include tagging the object in the
first image of the sequence of images based on received
input. The received input can be input received from a user,
which can include a point selection or a bounding box
selection. Moreover, identifying the object can include
detecting the object in the first image of the sequence of
images using a classifier. Further detailed implementations
of this method aspect of the subject matter are described
below and can be embodied in a non-transitory computer-
readable medium encoding instructions that cause comput-
ing apparatus to perform operations of the methods. These
methods can also be implemented in various computer
systems, such as a recognition system, a face tracking
system, and a pedestrian tracking system.

In various implementations, one or more of the following
features and advantages can be provided. A tracking method
can automatically explore context information in video data
in two semantic terms: distracters and supporters. A tracker
can successfully take advantage of the context to overcome
challenges in tracking in unconstrained environments with
occlusion, abrupt motion, motion blur, and frame-cut. More-
over, with the context, the tracker can explicitly handle the
situation where several objects similar the target are present.
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In addition, experiments have demonstrated that a tracker in
accordance with the present invention can outperform other
state-of-the-art methods.

The above and other aspects and embodiments are
described in greater detail in the drawings, the description
and the claims.

DESCRIPTION OF DRAWINGS

FIGS. 1A-ID show examples in which context elements
including distracters and supporters are explored by a
tracker.

FIGS. 2A-2D show an example in which a target leaves
the field of view and then returns.

FIGS. 3A-3D show an example in which a target is first
occluded and then not.

FIGS. 4A-4B show a case where the target drifts to
another object when the original target changes in appear-
ance.

FIGS. 5A-5D show results of running different trackers on
two challenging sequences of video.

FIGS. 6A-6D show results of running a tracker in accor-
dance with the present invention on additional sequences of
video.

FIG. 7A shows a method of visual tracking in video data.

FIG. 7B shows a method of tracking a single target in
video data.

FIG. 7C shows another method of visual tracking in video
data.

DETAILED DESCRIPTION

Long-term visual tracking in unconstrained environments
is critical for many applications such as video surveillance,
and human computer interaction. A major research axis has
been focused on building a strong model to encode the
variations of object appearance while distinguishing it from
the background. By doing this, a fundamental dilemma
occurs: the more complex the appearance model, the more
expensive it is. At the extreme, the emergence of cluttered
background and the occurrence of regions having similar
appearance as the target makes appearance modeling very
challenging.

In fact, there is additional information which can be
exploited instead of using only the object region. Context
information has been applied actively in object detection
(see S. K. Divvala, et al., “An empirical study of context in
object detection”, in CVPR, pages 1271-1278, 2009), object
classification (see L. J. Li, et al., “Towards total scene
understanding: Classification, annotation and segmentation
in an automatic framework™, in CVPR, pages 2036-2043,
2009; and D. Munoz, et al., “Contextual classification with
functional max-margin markov network”, in CVPR, pages
975-982, 2009), and object recognition (see M. Ozuysal, et
al., “Fast keypoint recognition in ten lines of code”, in
CVPR, pages 1-8, 2007). It has been employed in various
tracking methods (see D. A. Ross, et al., “Incremental
learning for robust visual tracking”, in IJCV, volume 77,
pages 125-141, 2008; and H. Grabner, et al., “Tracking the
invisible: Learning where the object might be”, in CVPR,
pages 1285-1292, 2010). However, in many respects, con-
text has been largely overlooked in visual tracking applica-
tions due in part to the fast run-time requirement. Also,
visual tracking, especially single object tracking, is consid-
ered as a semi-supervised problem where the only known
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data is the object bounding box in the first frame (or in first
few frames), which means learning such a context needs to
be performed on-the-fly.

In the present disclosure, context information is exploited
by expressing it in two different terms: 1) distracters are
regions that have similar appearance as the target, and 2)
supporters are local key-points around the object having
motion correlation with the target in a short time span. Some
examples of these elements that can be automatically
explored during tracking by a tracker are shown in FIGS.
1A-1D, where the distracters are identified by cyan bound-
ing boxes, the target is identified by a green bounding box,
and supporters are the end-points of the lines extending from
the target. FIG. 1A shows three babies, where one baby’s
face is the target being tracked and the other baby faces are
the distracters. FIG. 1B shows a close up of the target baby
with the supporters associated therewith. FIG. 1C shows a
street scene, where one person is the target being tracked and
other elements from the scene are the distracters. FIG. 1D
shows a close up of the target person with the supporters
associated therewith.

Distracters typically share the same type as the target, for
example other faces in face tracking, or other pedestrians in
pedestrian tracking. Supporters occur in regions belonging
to the same object as the target, but are not included in the
initial bounding box. In other words, the goal of the algo-
rithm is to find all possible regions which look similar to the
target to prevent drift, and to look for useful information
around the target to have strong verification. The target and
distracters can be detected using shared sequential random-
ized ferns, such as described in M. Ozuysal, et al. “Fast
key-point recognition using random ferns”, in PAMI, vol-
ume 32, pages 448-461, 2010, which is hereby incorporated
by reference. They can also be represented by individual
evolving templates. The supporters, on the other hand, can
be represented as keypoints, and described using descriptors
of the local region around them. Experiments show that
using these context elements helps the tracker avoid drifting
to another object in a cluttered background and helps
reacquire the right target after it leaves the FoV, or after total
occlusion, without confusion.

Region-based tracking approaches have been used in
visual tracking. To track an object frame by frame, most
algorithms try to search for the best match. Some methods
simply assume a search area where the object is expected
while some others use state prediction such as a particle
filter. These methods face several challenges in practice such
as abrupt motion, frame-cut, and object leaving FoV. To
address this issue, a fast detector has been proposed based on
a randomized forest to exhaustively scan through the whole
image, selecting several candidates, followed by an evalu-
ation step from the online template-based object model (see
Z. Kalal, et al., “P-N learning: Bootstrapping binary classi-
fiers by structural constraints”, in CVPR, pages 49-56, 2010;
and 7. Kalal, et al., “Online learning of robust object
detectors during unstable tracking”, in OLCV, pages 1417-
1424, 2009).

In region-based visual tracking, the appearance model
plays an essential role. Some methods model the appearance
of'an object in a generative way such as using histogram and
linear subspace, while others build the appearance model as
a classifier between the object and background. Also, some
hybrid methods have been proposed to fuse both types.
Since visual tracking is a semi-supervised problem where
the incoming data is unknown, online appearance modeling
may be preferable to an offline one. To track the target
successfully, these methods build an appearance model
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which is not only able to adapt to all changes well, but also
robust against background. This leads to a trade-off: a
tracker is fast but vulnerable to drift.

Moreover, the context information such as other moving
objects and other regions interacting with the target have
been overlooked by these approaches. Some have proposed
to explore a set of auxiliary objects which have strong
motion correlation and co-occurrence with the target in a
short term (see D. A. Ross, et al., “Incremental learning for
robust visual tracking”, in IJCV, volume 77, pages 125-141,
2008). Also, they should preferrably be tracked easily. The
color over segmentation can be employed to find such an
object, then Meanshift (see D. Comaniciu, et al., “Kernel-
based object tracking”, in PAMI, volume 25, pages 564-577,
2003) can be applied to track them. However, Meanshift and
color information are vulnerable in a cluttered background
and the fusion of multiple components, i.e., the technique for
auxiliary objects in this method is ad-hoc.

To get support from other areas. Grabner et al. introduced
the definition of supporters which are useful features to
predict the target location (see H. Grabner, et al., “Semi-
supervised online boosting for robust tracking”, in ECCV,
pages 234-247, 2008, which is hereby incorporated by
reference). These features should have some temporal rela-
tion in motion with the current target. However, to detect and
match all local features in each frame is expensive. Also, in
unconstrained environments, the motion of the object leav-
ing the FoV and under total occlusion is not easily predicted,
and a wrong guess may ruin the result. Others have proposed
to learn the attentional regions which have strong discrimi-
native power in their discriminative domains, i.e., the
regions which are distinctive from others in the defined
region (see J. L. Fan, et al., “Discriminative spatial attention
for robust tracking”, in ECCV, pages 480-493, 2010). But
this method is still limited by the use of local and semi-local
areas around the target, which is not efficient in the presence
of abrupt motions and frame-cuts.

In addition, related work includes the tracker built on P-N
learning (see Z. Kalal, et al., “Online learning of robust
object detectors during unstable tracking”, in OLCYV, pages
1417-1424, 2009). Basically it inherits the power of track-
ing-learning-detection (TLD) framework (see Z. Kalal, et
al.,, “Online learning of robust object detectors during
unstable tracking”, in OLCV, pages 1417-1424, 2009) while
focusing on exploring the structure of unlabeled data, i.e.,
the positive and negative structures. Even though the
method claims to explore the hard negative samples which
contain other moving objects, which can be considered
distracters, when an object has similar appearance to the
target, dominant positive training samples allow the tracker
to detect it as positive. In contrast, training those hard
negative samples makes the object model over-fit.

Moreover, since the method uses a template-based
appearance model, it may require the object region to fit into
a bounding box without much background included. This
can limit the tracker from taking advantage of more useful
information on other parts of the target with complex shape
appearance such as a human body. Also, because the P-N
Tracker purely relies on template matching to find the best
match among several candidates, it is vulnerable to switch-
ing to another similar object. To address these issues, the
present systems and techniques can employ the tracking-
learning-detection concept of this tracker to not only explore
the structure of positive and negative data but also the more
semantic data: distracters and supporters. It is worth noting
that the present method need not aim to solve the multi target
tracking (MTT) problem, where data association is the most
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important component. In MTT, most methods employ an
object detector or background subtraction to find possible
object responses. In contrast, the present systems and tech-
niques can automatically exploit and track all regions with
similar appearance to the target. Based on the context model,
i.e., supporters and distracters, and the appearance model,
the tracker can avoid confusion during tracking.

Distracters are regions which have appearance similar to
the target and consistently co-occur with it. Usually, dis-
tracters are other moving objects sharing the same object
category as the target. FIGS. 2A-2D show an example in
which a target leaves the field of view (FoV) and then
returns. In FIG. 2A, atarget is identified (shown with a green
bounding box) at initialization. In FIG. 2B, distracters are
also identified (shown with yellow bounding boxes) and
exploited while tracking the target. FIG. 2C shows that
tracking of the distracters continues even when the target
object leaves the FoV. FIG. 2D shows reaquisition of the
target when it returns to the FoV, without confusion with the
distracters. Building an appearance model to distinguish
objects of the same type can be done by developing a
recognition system that uses a large amount of supervised
samples to train. However, in visual tracking, the tracker has
temporal and spatial information help to exploit which
region is considered dangerous to preclude. To prevent the
tracker described here from drifting to these regions, one can
detect and initiate a simple tracker for each of them so that
confusion can be minimized during tracking.

Due to the efficiency of the randomized ferns classifier,
which is widely used in recognition and tracking, this
classifier can be employed to detect possible distracters in
every frame. Randomized ferns were originally proposed by
M. Ozuysal et al. (see M. Ozuysal, et al., “Fast key-point
recognition using random ferns”, in PAMI, volume 32,
pages 448-461, 2010) to increase the speed of randomized
forest (see L. Breiman, “Random forests”, in ML, volume
45, pages 5-32, 2001). Unlike the tree-structure in random-
ized forest, ferns, having non-hierarchical structures, consist
of a number of binary testing functions. In the present
example, each of them corresponds to a set of binary pattern
features. Each leaf in a fern records the number of added
positive and negative samples during training. For a test
sample, its evaluation by calculating the binary pattern
features leads it to a leaf in the fern. After that, the posterior
probability for that input testing sample in feature vector X,
to be labeled as an object (y=1) by a fern j is computed as
Pr(y=11x)=p/(p+n), where p and n are the number of
positive and negative samples recorded by that leaf. The
posterior probability is set to zero if there is no record in that
leaf. The final probability is calculated by averaging the
posterior probabilities given by all ferns:

T (9]
Priy=11x)= ) Priy=11x)
1

where T is the number of ferns. To improve the running time,
these randomized ferns can be shared between the object
detector and the distracter detector. Each tracker can control
the posterior probability by adding its positive and negative
samples to the ferns according to the P-constraints and
N-constraints, respectively as in P-N learning by Z. Kalal, et
al. The P-constraints force all samples close to the validated
trajectory to have positive label, while N-constraints have all
patches far from the validated trajectory labeled as negative.
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Different from P-N learning, we avoid adding hard negative
samples to avoid over-fitting. Also, during tracking, when
the appearance of a distracter is different from the target, it
can be discard. Indeed, it helps to emphasize that the focus
here is on tracking a single target, not on multiple target
tracking. This clearly explains the intuition: when several
objects have similar appearance to the target object, the
target tracker pays attention to them; if these distracters
change their appearance and no longer look like the target
object, they can be ignored.

Therefore, a sample can be considered a distracter can-
didate if it passes the random ferns with a probability
Pr(y=11xi)>0.5, and is not the target. Further details regard-
ing how to determine a candidate as the target are presented
below. In addition, an M frames sliding window can be
maintained, and the frequency fd, of a candidate k can be
counted based on its appearance consistency spatial consis-
tency related to the target. Then a candidate can be classified
as a distracter as follows

1 if fd, >0.5
and d(x;, M) > 0.8

0 otherwise

2)
Pa(yd =1]x1) =

where P,(yd=1Ix,) is the probability for a candidate i in a
feature vector x, having label y, while d(x,, M) is the
confidence of this candidate evaluated by the template-based
model of the target. The first condition allows detection of
distracters that repeatedly co-occur with the target, while the
second one helps to exploit distracters having very similar
appearance to the target.

In addition to using distracters, an efficient supporters set
can be built, which helps to quickly verify the location of the
target. Supporters are features which consistently occur
around the object, such as shown in FIGS. 3A-3D. They also
have a strong correlation in motion with the target. It should
be noted that the goal is tracking in unconstrained environ-
ment with several challenges such as frame-cuts and abrupt
motion due to hand-held camera recording. This can limit
the use of a motion model to predict the location of a target
based on the motion of the supporters (as in H. Grabner, et
al., “Tracking the invisible: Learning where the object might
be”, in CVPR, pages 1285-1292, 2010) or of the auxiliary
objects (as in D. A. Ross, et al., “Incremental learning for
robust visual tracking”, in IJCV, volume 77, pages 125-141,
2008).

In addition, the candidate responses are obtained based on
detection. The supporters are detected from the local region
around each candidate. FIG. 3A shows detection of all
supporters. After that, these supporter detection responses
are matched with the ones from previous frames to find the
co-occurrence between them and the target. In fact, from
these results, the motion correlations can also be inferred
without using very complex motion models typically needed
in unconstrained environments, and detectors that provide a
list of interest points (e.g., Sift, Surf, Orb, etc.) can be used.
Moreover, unlike the supporters proposed in H. Grabner, et
al., “Tracking the invisible: Learning where the object might
be”, in CVPR, pages 1285-1292, 2010, which are expensive
to detect and match in the whole frame, the present sup-
porters can be efficiently detected and matched around the
locations of the very few candidates having high probability
to be the target in each frame.

To detect supporters, the Fast Hessian Detector can be
used, and SURF descriptor (as in H. Bay, et al., “SURF:
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Speeded up robust features”, in CVIU, volume 110, pages
346-359, 2008) can be employed to describe the region
around them. All of these supporters can be stored in a
sliding window of k frames. In some implementations, k=5,
whereas k can be set with other values in other implemen-
tations. Using higher values for k can result in the process
running slower, depending on the computer hardware used,
while lower values for k may not perform as well because,
while the status of supporters need only be tracked for a
short amount of time, this time frame cannot be too short. In
practice, imposing a k limitation, as discussed here, is less
important when using sufficient computation resources.
There are two types of supporters: active and passive.
FIG. 3B shows learning of the active supporters for the
target, where active supporters are shown with pink dots
having arrows pointing to the black dot center of the target,
and passive supporters are shown with blue dots without
arrows. The active supporters are the ones co-occurring with
the target in high frequency, e.g., £fs>0.5, within the sliding
window, while passive ones are the rest. When there are
regions having similar appearance to the target but not being
tracked by distracter trackers, all of SURF features can be
detected around these regions. After that, they can be
matched to the supporter model, which basically are the
latest descriptors of the supporters in the sliding window.
Finally, the supporting score can be computed as follows

s = fem ®

Rig

where n,, and n,, are the numbers of active matched
supporters and total active supporters in the model. A
supporter model is considered strong if S,>0.5 and n,>5 (to
avoid the unstable information within non-textured regions
around the target). Then all of the matched results can be
used to update the supporter model. Note that the unmatched
results can also be added to the model.

As noted above, the context tracker can exploit context
information while tracking and takes advantage of this
information to avoid drift. The P-N Tracker (Z. Kalal, et al.,
“P-N learning: Bootstrapping binary classifiers by structural
constraints”, in CVPR, pages 49-56, 2010, which is hereby
incorporated by reference) can be used as the basic target
tracker with several extensions. First, the randomized ferns
can be extended to accept multiple objects. Note that this is
not equivalent to a multi-class classifier because each object
preserves its own posterior probability while they may share
the same object type as the target. Second, the 6 bitBP (such
as described in T. B. Dinh, et al., “High resolution face
sequences from a PTZ network camera”, in FG, 2011, which
is hereby incorporated by reference) can be used, which
helps to boost up the speed of the detector. The 6 bitBP
makes use of the constant value of each whole patch during
evaluation. Third, instead of using only the first initial patch
as the object model, which is quite conservative and vul-
nerable to appearance changes, an online template-based
object model (as in Z. Kalal, et al., “Online learning of
robust object detectors during unstable tracking”, in OLCYV,
pages 1417-1424, 2009, which is hereby incorporated by
reference) can be used.

However, this model can be improved by constructing it
in binary search tree using k-means. The model can be
iteratively split into two subsets to form a binary tree. By
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doing this, the computational complexity to evaluate a
sample is O(log,) instead of O(n) when using Brute-force.
This improvement is important in improving the running
time because the online model linearly grows to adapt to
appearance changes. It is worth noting that other tracking
methods can also be extended using these concepts. How-
ever, the PN-Tracker may be a better starting point because
it uses a scanning window to search for all of possible
candidates in the whole image, which helps to explore the
context at the same time. Also, the randomized forest can be
extendable to reduce the cost of initializing a totally new
tracker for a distracter. Using such techniques, a system can
avoid drifting to other regions while the target is under
occlusion, as shown in FIG. 3C, and the target can be readily
reaquired with the strong supporter model, as shown if FIG.
3D.

As discussed above, distracters are regions which have
similar appearance as the target. In the tracker, a testing
sample confidence score can be computed using Normalized
Cross-Correlation (NCC) between it and the closest image
patch in the object model. The region having the highest
confidence is considered as the current target if its score is
larger than a threshold 8=80%. However, in practice, there
are typically several other regions satisfying this condition.
After choosing the best candidate as the tracking result (see
Algorithm 1 below), all other responses can be associated to
the distracter trackers using greedy association: the tracker
producing higher confidence on a patch is associated with
higher priority. The remaining regions can also trigger new
distracter trackers. These trackers can be formulated simi-
larly to the basic tracker. However, to avoid the increasing
number of unnecessary trackers, they can be terminated
whenever they lose their target.

Assuming that one has the valid target at frame t, the
supporters are extracted from a defined region around the
location of that target, such as within a radius R from the
center of the target. As another example, in some imple-
mentations, the supporters can be extracted from the rect-
angle having three times the width and the height of the
current target, with the same center. Other parameters can be
used here for supporter extraction around the target. In any
case, after extraction of supporters, a sliding window of k=5
frames can be used to store and match the previous sup-
porters with the current ones. Each match makes the fre-
quency of that supporter increase by 1.

As discussed above, in practice, there are several candi-
dates similar to the target with very high confidence score.
In fact, the right candidate may not even obtain the highest
score, especially when the appearance is changing. For
example, FIGS. 4A-4B show a case where the target drifts
to another object with the highest score when the original
target changes in appearance so much that is exceeds a
threshold and is lost (the lost target is identified in FIG. 4B
with a red bounding box). Without context, the tracker
obviously switches to the one with the highest score. Also,
in unconstrained environments, the target may leave the
FoV, or be completely occluded by other objects. In such
cases, the tracker will simply switch to another region
satisfying the threshold 0. In contrast, a tracker as described
herein can automatically exploit all the distracters and pays
attention to them by tracking them simultaneously. Also, the
tracker can discover a set of supporters to robustly identify
the target among other similar regions. Table 1 below
provides a detailed example agorithm.
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10
TABLE 1

Algorithm 1 Context Tracker

- init target T*, Distracters = { }
- detect Supporters around the T*
while run do
| -detect object responses using randomized ferns
| -detect all possible candidates using
online template-based model
for each candidate do
-calculate the supporting score (Eq. 3)
if supporting score is strong then
| -add candidate to Strong Candidates
end
end
if Strong Candidates = {6} then
| -T* <« object with max confidence score
end
-run greedy data association to find T*
and Distracters based on their confidence
score.
for each tracker do
| -update its posterior probability (Eq. 1) in randomized ferns
| -update its online template-based object model
end
if T* has high confidence score then
| -update Supporters (active and passive)
by matching with supporters around T*.
-update Distracters with new
regions has high confidence score = T*
I end

In some implementations, eight ferns and four 6 bitBP
features per fern can be used. All thresholds can be fixed as
described. The threshold used to validate the correct target
can be calculated by the NCC between a candidate and the
online object model. It can be set at 80% according to the
experiment demonstrated in Z. Kalal, et al., “Online learning
of robust object detectors during unstable tracking”, which
also shows that LOOP event outperforms the other growing
ones. The scanning window can start searching the mini-
mum region of 20x20. For a sequence of resolution 320x
240, the number of search windows can be 100 k, while in
640x480 the number of search windows can be 600 k,
approximately.

It is worth noting that the complexity of the algorithm is
affected by the number of supporters and distracters. In some
experiments, the maximum number of active supporters was
observed to be around 30-40, while that of distracters was
around 10-15. Hence, the maximum of the most similar
distracters can be limited to 15, and that of supporters can be
limited to 30 to guarantee a reasonable running time, in
some implementations. Without code optimization, a C++
implementation of the context tracker can run comfortably at
10-25 fps on 320x240 sequences depending on the density
of supporters and distracters, which means without using
context information, the method can run at 25 fps, while in
a heavy case, the algorithm slows down to 10 fps. To show
the performance of the tracker, the experiments were carried
out in two different setups: one is to evaluate the contribu-
tion of context in the tracker, and the other is to compare the
present systems and techniques with various state-of-the-art
methods.

For context performance evaluation, the tracker is com-
pared with and without context elements. The PNTracker is
used as reference. It is worth noting that the implementation
of PNTracker is the combination implementation of “Online
learning of robust object detectors during unstable tracking”
and “P-N learning: Bootstrapping binary classifiers by struc-
tural constraints”. To emphasize the contribution of context
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in terms of distracters and supporters, two very challenging
sequences were chosen, which contain similar objects that
move: Multiplefaces and Babies.

The Multiplefaces sequence drawn from the SPEVI data
set is very difficult with four people moving around. It
contains several challenges such as out of plane rotation,
total occlusion, and target leaving FoV. It is hard to differ-
entiate between the other faces and the target. While the
tracker described herein easily ignores the other objects
using distracters and supporters, the PNTracker occasionally
switches to another face during tracking. To avoid random-
ization effects, each tracker was run five times and several
drift cases of PNTracker, which makes it fail to recover,
were observed. The results are shown in FIGS. 5A-5B. FIG.
5A shows that the PNTracker loses the target in the Mul-
tiplefaces sequence. FIG. 5B shows that the present tracker
maintains the target in the Multiplefaces sequence.
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learning: Bootstrapping binary classifiers by structural con-
straints”, in CVPR, pages 49-56, 2010), Vehicle (in M. Yang,
et al., “Context-aware visual tracking”, in PAMI, volume 31,
pages 1195-1209, 2009), Liquor, ETHPedestrian, Multi-
faces, Clutter and Scale, and Animal (used in J. S. Kwon, et
al., “Visual tracking decomposition”, in CVPR, pages 1269-
1276, 2010), and Girl (in B. Babenko, et al., “Visual tracking
with online multiple instance learning”, in CVPR, pages
983-990, 2009). They contain occlusion and object leaving
FoV (Motocross. Carchase. Vehicle. ETHPedestrian, Mul-
tifaces, Girl), very cluttered background (Carchase, Liquor
ETHPedestrian, Multifaces) out-of-plane rotation (Car-
chase, Vehicle, Multifaces, Girl), abrupt motion (Motocross,
Clutter, Scale, Animal), and motion blur (Liquor, Clutter,
Animal). Several of them are recorded in unconstrained
environments such as Motocross. Vehicle, ETHPedestrlan,
Carchase, and Animal.

Video
Sequence Frames FT MILT CoTT DNBS VID PNT Ours
Animal 72 69 9 8 19 6 37 9
Carchase 5000  lost@355 lost@355  lost@409 lost@364 lost@357 lost@1645 24
Clutter 1528  lost@1,081 lost@413 9 6 6 4 6
ETHPedestrian 874  lost@95 lost@95  lost@95  lost@635 lost@95 10 16
Girl 502 lost@248 30 14 39 69 19 18
Liquor 1407 lost@A47 lost@288 30 lost@404  lost@404 21 10
Motocross 2665 lost@137 lost@485  lost@591  lost@10  lost@l0 10 12
Multifaces 1006 lost@64 lost@64  lost@394 lost@64  lost@64  lost@97 26
Scale 1911 8 11 6 lost@269 3 6 2
Vehicle 946 lost@679 lost@481 9 lost@517  lost@517 8 8
Speed 1.6 14 2 7 0.2 12% 10
(fps, on
320 x 240)
35

The Babies video shows a triplet of three babies playing
on the ground. This sequence is really interesting and
challenging because they all look alike. PNTracker jumps to
the face of another baby as soon as the target has some
appearance change. The present tracker successfully keeps
following the right target till the end, as shown in FIGS.
5C-5D. FIG. 5C shows that the PNTracker loses the target
in the Babies video. FIG. 5D shows that the present tracker
maintains the target in the Babies video. Further, it is
important to note that in most of the cases where no strong
context exists, the present tracker still shows overall better
results than PNTracker and outperforms other state-of-the-
art methods.

To demonstrate the performance of the present context
tracker, it is compared against several state-of-the-art meth-
ods including: FragTracker (FT) (A. Adam, et al., “Robust
fragments-based tracking using the integral histogram”, in
CVPR, pages 798-805, 2006), MIL-Tracker (MILT) (B.
Babenko, et al., “Visual tracking with online multiple
instance learning”, in CVPR, pages 983-990, 2009),
Cotraining Tracker (CoTT) (M. Yang, et al., “Context-aware
visual tracking”, in PAMI, volume 31, pages 1195-1209,
2009), PNTracker (PNT) (Z. Kalal, et al., “P-N learning:
Bootstrapping binary classifiers by structural constraints”, in
CVPR, pages 49-56, 2010), DNBSTracker (DNBS) (A. Li,
et al., “Discriminative nonorthogonal binary subspace track-
ing”, in ECCV, pages 238-271, 2010), and VTD-Tracker
(VDT) (J. S. Kwon, et al., “Visual tracking decomposition”,
in CVPR, pages 1269-1276, 2010). All codes come from the
original authors.

The chosen data set includes several challenging
sequences: Motocross and Carchase (in Z. Kalal, et al., “P-N
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Table 2 above shows average center location error (pixels)
and performance comparison between the trackers: FT,
MILT, CoTT, DNBS, VTD, PNT, and the present tracker
(Ours) in different challenging video sequences. The best
performance is in bold, the second best is in italic. The
numbers after “lost @ indicate the frame numbers when the
tracker gets lost. The * indicates that the method was
implemented on Matlab using C-Mex.

The metric used for comparison is the average center
location error, which was adopted instead of the detection-
criterion of the VOC (Visual Oject Classes) challenge
because different trackers require different initial bounding
boxes depending on the nature of their method. For example,
template-based methods such as PNTracker and Frag-
Tracker are initialized by a tight bounding box, while a
detection-based method such as CoTT needs a loose one.
However, because the chosen data sets are very challenging,
with a number of long-term sequences, most existing meth-
ods fail somewhere in the middle of a sequence. Therefore,
the frame number is noted where a tracker starts to lose the
object and never reacquires it. This means that the result of
a tracker is accepted even when it fails to get the right target
in several frames before reacquisition happens. A target is
considered “lost” if the overlapping region between its
bounding box and the ground-truth is less than 50%.

The quantitative comparisons are shown in Table 2 above.
The running time comparison (in the last row) is for a raw
reference as different methods have different search range
which impacts the speed greatly. For example, FragTracker
and MILTracker use exhaustive search in a small area.
Increasing the range slows down the speed significantly as
the number of candidates grows. In CoTT, the use of particle



US 9,437,009 B2

13

filter is also affected by the search range implicitly influ-
enced by the number of the particles. PN-Tracker and the
present tracker scan the whole image to find candidates. The
running time of the present tracker also depends on the
number of distracters discovered by the tracker. Those
distracters are often few as observed in general cases. Some
snapshots of the present context tracker operating on several
sequences are shown in FIGS. 6A-6D. FIG. 6A shows the
present context tracker operating on the Animal sequence.
FIG. 6B shows the present context tracker operating on the
ETHPedestrian sequence. FIG. 6C shows the present context
tracker operating on the Motocross sequence. FIG. 6D
shows the present context tracker operating on the Carchase
sequence.

Overal, the present tracker has better performance than
the PNTracker with the help of context, and outperforms all
other approaches. Although most of them may work well in
controlled environments, it is difficult for them to consis-
tently follow the target in long-term sequences and in
unconstrained environments. There are some large numbers
in the results (e.g., Carchase and Multifaces) because it
reacquires the object several frames later than the ground
truth, which makes the overall score look not good when we
calculate the error using its previous position. It is also
important to note that the maximum number of frames run
by VITDTracker is 1000 frames; hence, its results shown in
Table 2 are the average of 1000 frames at the maximum.

FIG. 7A shows a method of visual tracking in video data.
Video data is received 700. This can include pre-recorded
video sequences, such as described above, or live video
images. A single target is tracked 702 in the video data,
where this tracking includes detecting and using one or more
distracters, which have an appearance similar to that of the
tracked target. As discussed above, use of context informa-
tion including one or more distracters in tracking a single
target improves the tracking of that target. As will be
appreciated, the same systems and techniques can be used to
independently track respective single targets. Information
corresponding to the tracked target can be output 704. Such
information can be provided for use in various types of
systems, such as face tracking and pedestrian tracking
systems. For example, the bounding box of the object can be
output in every frame, either on-the-fly (if it is a live
application) by providing a function with bounding box
output, or write out to an output file with a list of bounding
boxes corresponding to each frame of the input video. Such
output can be integrated with other systems to feed other
applications. For example, some applications can include
making a video clickable, such as with application to e-com-
merce. One may associate a link or a website to a part of an
image in one frame (e.g., a jacket for instance), and the
present systems and techniques can be implemented to allow
the user to click on any frame (having that same image part)
to access the link.

FIG. 7B shows a method of tracking a single target in
video data. The target and one or more distracters are
detected 720 in video imagery. This can involve using a
shared classifier having binary testing functions correspond-
ing to positive and negative samples added during training,
as described above, where the samples do not include hard
negative samples. In addition, the one or more distracters
can be explored using a sequential randomized forest and a
template-based appearance model, where the template-
based appearance model is constructed in a binary search
tree using k-means, such as described above.

One or more supporters can also be detected 722. Such
supporters include points outside of the tracked target that
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have motion correlation with the tracked target. The one or
more supporters can be local features. In addition, detecting
the one or more supporters can involve using a sliding
window of k frames in the video imagery. Moreover, detect-
ing the one or more supporters can involve distinguishing
active supporters from passive supporters, such as described
above.

If a distracter is determined 724 to have changed in
appearance to no longer be similar to the target, or if a
distracter can no longer be tracked, or both, any such
distracters can be discarded 726. Furthermore, a check can
be made 728 to determine if a maximum number of dis-
tracters and supporters has been surpassed, and if so, one or
more of the least relevant distracters and supporters can be
discarded 730. For example, a maximum number of the one
or more distracters can be limited to fifteen, and a maximum
number of the one or more supporters can be limited to
thirty, as discussed in the example above. With a complete
set of distracters and supporters in hand, the target is tracked
732 using those distracters and supporters, and the method
continues by performing its detections and checks for the
next image(s) in the video imagery.

FIG. 7C shows another method of visual tracking in video
data. An object is identified 750 in a first image of a
sequence of images. Note that the “first” image is not
necessarily the absolute first image in a sequence, but rather
simply an image that comes before (but not necessarily
immediately before) a second image of the sequence. Iden-
tifying the object can include tagging the object in the first
image of the sequence of images based on received input,
which can be input received from a user. For example, user
input can include a point selection or a bounding box
selection with respect to the image. In addition, identifying
the object can include detecting the object in the first image
of the sequence of images using a classifier.

One or more regions similar to the object can be identified
752 in the first image of the sequence of images. In some
implementations, this can involve using a same classifier
used to identify the target. In addition, the object and each
of the one or more regions similar to the object can be
represented 754 by individual evolving templates, such as
described above.

One or more features around the object can be identified
756 in the first image of the sequence of images. This can
involve distinguishing between features that actively sup-
port the object, since they co-occur with the object with a
high frequency, and features that passively support the
object. In addition, each of the one or more features can be
represented 758 as a keypoint having a descriptor of a region
around the feature, such as described above.

Drift in detection of the object in a second image of the
sequence of images can then be prevented 760 based on the
one or more regions similar to the object, and the object can
be verified 762 in the second image of the sequence of
images based on the one or more features. As will be
appreciated from the description above, the method of FIG.
7C can operate continuously on a sequence of images (not
just a first image and a second image) to actively track the
object through the entire sequence. Moreover, the regions
and features can be actively updated from frame to frame in
the sequence, and discarded when no longer useful in
providing context for the tracked object.

The processes described above, and all of the functional
operations described in this specification, can be imple-
mented in electronic circuitry, or in computer hardware,
firmware, software, or in combinations of them, such as the
structural means disclosed in this specification and structural
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equivalents thereof, including potentially a program (stored
in a machine-readable medium) operable to cause one or
more programmable machines including processor(s) (e.g.,
a computer) to perform the operations described. It will be
appreciated that the order of operations presented is shown
only for the purpose of clarity in this description. No
particular order may be required for these operations to
achieve desirable results, and various operations can occur
simultaneously or at least concurrently. In certain imple-
mentations, multitasking and parallel processing may be
preferable.

The various implementations described above have been
presented by way of example only, and not limitation.
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi-
ment can also be implemented in multiple embodiments
separately or in any suitable subcombination. Moreover,
although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

Thus, the principles, elements and features described may
be employed in varied and numerous implementations, and
various modifications may be made to the described embodi-
ments without departing from the spirit and scope of the
invention. For example, the present systems and techniques
can be used to develop a tracker that can handle articulated
objects and fast appearance change. A parts-based approach
can be used to handle an articulated object by splitting the
object into parts, and each of the parts can be treated
independently but with respect to the topology from which
it is originally generated. The tracker can be applied to each
part, which can be optimized with the contraints of the
object’s configuration. For fast appearance change, the con-
tour of the object can be used because the contour is
typically not as sensitive to fast appearance change as
texture features. Thus, with this combination, the tracker can
more readily deal with fast appearance change. As another
example, the systems and techniques described can be
extended it to multiple object tracking by integrating the
current appearance model approach with a motion model
and global optimization in order to address the data asso-
ciation issue typical in multiple object tracking. In some
implementations, multiple parallel trackers can be used for
several windows.

Accordingly, other embodiments may be within the scope
of the following claims.

What is claimed is:

1. A method comprising:

receiving video data;

tracking a single target identified in the video data, the
tracking comprising detecting and using one or more
distracters, which have an appearance similar to that of
the tracked target in that each of the one or more
distracters is a likely false positive for a classifier that
detects the single target, wherein the tracking com-
prises detecting and using one or more supporters,
which include points outside of the tracked target that
have motion correlation with the tracked target;

detecting the target and the one or more distracters using
a shared classifier having binary testing functions cor-

5

10

20

30

35

40

45

50

60

65

16

responding to positive and negative samples added
during training, but not including hard negative
samples;

discarding a distracter from the one or more distracters

when its appearance changes to no longer be similar to
the target, or when it can no longer be tracked, or both;
and

outputting information corresponding to the tracked tar-

get.
2. The method of claim 1, wherein the one or more
distracters are explored using a sequential randomized forest
and a template-based appearance model, wherein the tem-
plate-based appearance model is constructed in a binary
search tree using k-means, and the one or more supporters
are local features.
3. A method of comprising:
receiving video data;
tracking a single target identified in the video data, the
tracking comprising detecting and using one or more
distracters, which have an appearance similar to that of
the tracked target in that each of the one or more
distracters is a likely false positive for a classifier that
detects the single target, wherein the tracking com-
prises detecting and using one or more supporters,
which include points outside of the tracked target that
have motion correlation with the tracked target;

limiting a maximum number of the one or more distract-
ers and a maximum number of the one or more sup-
porters; and

outputting information corresponding to the tracked tar-

get.

4. The method of claim 3, comprising:

detecting the one or more supporters using a sliding

window of k frames in the video data and by distin-
guishing active supporters from passive supporters.

5. A system comprising:

a video acquisition system; and

processor electronics configured to track a single target

identified in video data from the video acquisition
system, including detecting and using one or more
distracters, which have an appearance similar to that of
the tracked target in that each of the one or more
distracters is a likely false positive for a classifier that
detects the single target, and to output information
corresponding to the tracked target;

wherein the processor electronics are configured to detect

and use one or more supporters, which include points
outside of the tracked target that have motion correla-
tion with the tracked target, to track the single target;
and

wherein the processor electronics are configured to detect

the target and the one or more distracters using a shared
classifier having binary testing functions corresponding
to positive and negative samples added during training,
but not including hard negative samples.

6. The system of claim 5, wherein the processor electron-
ics are configured to discard a distracter from the one or
more distracters when its appearance changes to no longer
be similar to the target, or when it can no longer be tracked,
or both.

7. The system of claim 5, wherein the processor electron-
ics are configured to detect the one or more supporters using
a sliding window of k frames in the video data and by
distinguishing active supporters from passive supporters.

8. The system of claim 5, comprising a server computer
system and a client computer system, wherein the client
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computer system comprises the video acquisition system,
and the server computer system comprising the processor
electronics.

9. A system comprising:

a video acquisition system; and

processor electronics configured to track a single target

identified in video data from the video acquisition
system, including detecting and using one or more
distracters, which have an appearance similar to that of
the tracked target in that each of the one or more
distracters is a likely false positive for a classifier that
detects the single target, and to output information
corresponding to the tracked target;

wherein the processor electronics are configured to detect

and use one or more supporters, which include points
outside of the tracked target that have motion correla-
tion with the tracked target, to track the single target;
and

wherein the processor electronics are configured to limit

a maximum number of the one or more distracters and
a maximum number of the one or more supporters.

10. The system of claim 9, wherein the one or more
distracters are explored using a sequential randomized forest
and a template-based appearance model.

11. The system of claim 10, wherein the template-based
appearance model is constructed in a binary search tree
using k-means, and the one or more supporters are local
features.
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